

HDA Fixação de corte interior

Versão da ancoragem **Vantagens** - adequado para betão não fendilhado e fendilhado C 20/25 a C 50/60 HDA-P - bloqueio mecânico (corte interior) HDA-PR reduzida força de expansão HDA-PF (permite pequenas distâncias ao Fixação prébordo do betão / espaçamento aplicável entre fixações) corte interior automático (sem necessidade de ferramenta HDA-T específica) HDA-TR HDA-TF elevada capacidade de carga, Fixação através desempenho igual ao de um do material a fixar chumbadouro sistema completo (fixação, broca escalonada, ferramenta de instalação, martelo perfurador) marcação na fixação para controlo na instalação (fácil e seguro) - completamente removível relatórios de teste: resistência ao fogo, fadiga, choque, anti-sismo

Betão

Zona traccionada

ao de um chumbadouro

Resistência ao fogo

Fadiga

Choque

Anti-sismo

Resistência à corrosão

Aprovada para centrais nucleares

Aprovação Técnica Europeia

Marcação CE

Software de Ancoragens Hilti

80 11 / 2010

Homologações / Certificados

Descrição	Entidade / Laboratório	No. / data de emissão
European technical approval a)	CSTB, Paris	ETA-99/0009 / 2008-03-25
ICC-ES report	ICC evaluation service	ESR 1546 / 2008-03-01
Shockproof fastenings in civil defence installations	Bundesamt für Zivilschutz, Bern	BZS D 04-221 / 2004-09-02
Nuclear power plants	DIBt, Berlin	Z-21.1-1696 / 2008-09-01
Dynamic loads	DIBt, Berlin	Z-21.1-1693 / 2007-05-25
Fire test report	IBMB, Braunschweig	UB 3039/8151-CM / 2001-01-31
Assessment report (fire)	warringtonfire	WF 166402 / 2007-10-26

a) Todos os dados técnicos apresentados nesta secção para HDA-P(R) e HDA-T(R) estão de acordo com a ETA-99/0009, edição 2008-03-25. As versões sherardizadas das fixações HDA-PF e HDA-TF não estão abrangidas pelas homologações.

Valores resistentes de referência (para uma fixação isolada)

Todos os dados nesta secção aplicam-se para

Para mais informações consultar Método de Dimensionamento Simplificado

- Correcta instalação (ver sequência de instalação)
- Sem influências de bordos e espaçamentos entre fixações
- Betão conforme especificado na tabela abaixo
- Ruptura do aço
- Espessura mínima do material base
- Betão C 20/25, f_{ck.cube} = 25 N/mm²

Resistência última média

	Bet	tão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancoragem	M10	M12	M16	M20 a)	M10	M12	M16	M20 ^{a)}	
Tracção N _{Ru,m}									
HDA-P(F), HDA-T(F) b) [kN]	48,7	70,9	133,3	203,2	29,4	41,1	88,1	111,6	
HDA-PR, HDA-TR [kN]	48,7	70,9	133,3	203,2	29,4	41,1	88,1	111,6	
Corte V _{Ru,m}									
HDA-P, HDA-PF b) [kN]	23,3	31,7	65,6	97,4	23,3	31,7	65,6	97,4	
HDA-PR [kN]	24,3	36,0	66,7	-	24,3	36,0	66,7	-	
HDA-T, HDA-TF b) c) [kN]	68,8	84,7	148,2	216,9	68,8	84,7	148,2	216,9	
HDA-TR ^{c)} [kN]	75,1	92,1	160,9	-	75,1	92,1	160,9	-	

- a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm
- b) As fixações HDA-PF e HDA-TF não estão abrangidas pela ETA-99/0009
- valores válidos para espessura mínima da placa base t_{fix,min} sem utilização da anilha de centragem (ver detalhes de instalação)

Resistência característica

	Bet	ão não	fendilh	ado	Betão fendilhado						
Diâmetro da ancoragem	M10	M12	M16	M20 a)	M10	M12	M16	M20 ^{a)}			
Tracção N _{Rk}											
HDA-P(F), HDA-T(F) b) [kN]	46	67	126	192	25	35	75	95			
HDA-PR, HDA-TR [kN]	46	67	126	-	25	35	75	-			

		Betão não fendilhado e fendilhado														
Diâmetro da ancoragem		M10 M12				M16				M20 ^{a)}						
Corte V _{Rk}																
HDA-P, HDA-PF b)	[kN]	2	22 30 62						92							
HDA-PR		2	23 34 63 -													
para t	[mm]	10≤	15≤	10≤	1:	5≤	20≤	15≤	20≤	25≤	30≤	35≤	20≤	25≤	40≤	55≤
para t _{fix}	[mm]	<15	≤20	<15	<	20	≤50	<20	<25	<30	<35	≤60	<25	<40	<55	≤100
HDA-T, HDA-TF b)	[kN]	65 c)	65	80 c)	3	30	100	140 c)	140	155	170	190	205 c)	205	235	250
para t	[mm]	10≤	15≤	10≤	15≤	20≤	30≤	20≤	25	≤ 3	30≤	35≤			-	
para t _{fix}	[mm]	<15	≤20	<15	<20	<30	≤50	<25	<3	0 <	<35	≤60		-	-	
HDA-TR	[kN]	71 c)	71	87 c)	87 °) 87 94 109 152 °			152 ° 152 158 170			170	-				

- a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 µm
- b) As fixações HDA-PF e HDA-TF não estão abrangidas pela ETA-99/0009
- c) Apenas com utilização de anilha de centragem (t = 5 mm)

Resistência de cálculo

	Bet	ão não	fendilha	ado	Betão fendilhado					
Diâmetro da ancoragem	M10	M12	M16	M20 a)	M10	M12	M16	M20 ^{a)}		
Tracção N _{Rd}										
HDA-P(F), HDA-T(F) b) [kN]	30,7	44,7	84,0	128,0	16,7	23,3	50,0	63,3		
HDA-PR, HDA-TR [kN]	28,8	41,9	78,8	-	16,7	23,3	50,0	-		

		Betão não fendilhado e fendilhado														
Diâmetro da ancoragem		M10 M12						M16					M20 ^{a)}			
Corte V _{Rd}																
HDA-P, HDA-PF b)	[kN]	17	17,6 24,0 49,6					73,6								
HDA-PR		17,3 25,6 47,4 -					-									
para t	[mm]	10≤	15≤	10≤	1:	5≤	20≤	15≤	20≤	25≤	30≤	35≤	20≤	25≤	40≤	55≤
para t _{fix}	[mm]	<15	≤20	<15	<	20	≤50	<20	<25	<30	<35	≤60	<25	<40	<55	≤100
HDA-T, HDA-TF b)	[kN]	43 c)	43	53 c)	5	53	67	93 c)	93	103	113	127	137 c)	137	157	167
para t	[mm]	10≤	15≤	10≤	15≤	20≤	30≤	20≤	25:	≤ ;	30≤	35≤		,	-	
para t _{fix}	[mm]	<15	≤20	<15	<20	<30	≤50	<25	<3	0 .	<35	≤60			=	
HDA-TR	[kN]	53 c)	53	65° 65 71 82 114°			11	114 119 128			8 -					

- a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm
- b) As fixações HDA-PF e HDA-TF não estão abrangidas pela ETA-99/0009
- c) Apenas com utilização de anilha de centragem (t = 5 mm)

Cargas recomendadas

	Bet	ão não	fendilha	ado	Betão fendilhado					
Diâmetro da ancoragem	M10	M12	M16	M20 a)	M10	M12	M16	M20 ^{a)}		
Tracção N _{Rec} b)										
HDA-P(F), HDA-T(F) ^{c)} [kN]	21,9	31,9	60,0	91,4	11,9	16,7	35,7	45,2		
HDA-PR, HDA-TR [kN]	20,5	29,9	56,3	-	11,9	16,7	35,7	-		

		Betão não fendilhado e fendilhado														
Diâmetro da ancoragem		M10 M12					M16				M20 ^{a)}					
Corte V _{Rec} b)																
HDA-P, HDA-PF c)	[kN]	12	12,6 17,1 35,4						52,6							
HDA-PR		12,3 18,2 33,8 -					-									
para t	[mm]	10≤	15≤	10≤	1:	5≤	20≤	15≤	20≤	25≤	30≤	35≤	20≤	25≤	40≤	55≤
para t _{fix}	[mm]	<15	≤20	<15	<	20	≤50	<20	<25	<30	<35	≤60	<25	<40	<55	≤100
HDA-T, HDA-TF c)	[kN]	31 d)	31	38 d)	3	88	48	67 ^{d)}	67	74	81	90	98 d)	98	112	119
para t	[mm]	10≤	15≤	10≤	15≤	20≤	30≤	20≤	25	≤ 3	30≤	35≤			-	
para t _{fix}	[mm]	<15	≤20	<15	<20	<30	≤50	<25	<3	0	<35	≤60			-	
HDA-TR	[kN]	38 ^{d)}	38	47 ^{d)}	47	50	59	59 82 d) 82 85 91			1 -					

- a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm
- b) Coeficiente de segurança parcial para acções $\gamma_F = 1,4$. O coeficiente de segurança parcial para acções depende do tipo de carga e deve ser retirado dos regulamentos nacionais.
- c) As fixações HDA-PF e HDA-TF não estão abrangidas pela ETA-99/0009
- d) Apenas com utilização de anilha de centragem (t = 5 mm)

Materiais

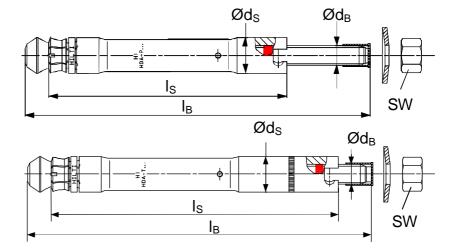
Propriedades mecânicas de HDA

Diâmetro da ancoragem			HDA-P(F)	, HDA-T(F)		HD	A-PR, HDA	-TR
		M10	M12	M16	M20 a)	M10	M12	M16
Parafuso de fixação								
Tensão ruptura nominal fuk	[N/mm²]	800	800	800	800	800	800	800
Tensão de cedência f _{yk}	[N/mm²]	640	640	640	640	600	600	600
Secção de corte A _s	[mm²]	58,0	84,3	157	245	58,0	84,3	157
Momento resistente W _{el}	[mm³]	62,3	109,2	277,5	540,9	62,3	109,2	277,5
Resistência característica à flexão sem a camisa exterior M ⁰ _{Rk,s} b)	[Nm]	60	105	266	519	60	105	266
Manga de fixação								
Tensão ruptura nominal fuk	[N/mm ²]	850	850	700	550	850	850	700
Tensão de cedência f _{yk}	[N/mm²]	600	600	600	450	600	600	600

- a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm
- b) O momento de flexão recomendado da fixação de parafuso HDA pode calcular-se a partir de $M_{rec} = M_{Rd,s} / \gamma_F = M_{Rk,s} / (\gamma_{Ms} \cdot \gamma_F) = = (1,2 \cdot W_{el} \cdot f_{uk}) / (\gamma_{Ms} \cdot \gamma_F)$, em que o factor de segurança parcial para parafusos de classe 8.8 é $\gamma_{MS} = 1,25$, para A4-80 igual a 1,33, e o factor de segurança parcial para acções pode ser obtido como $\gamma_F = 1,4$. No caso da HDA-T/TR/TF, a capacidade de flexão da manga é negligenciada, sendo que apenas é tida em conta a capacidade do parafuso.

Qualidade do material

Parte		Material
HDA-P / HD	A-T (versão aço carbono	0)
Manga:		Aço com pontas de carboneto de tungsténio, galvanizado mín. 5 μm
Parafuso	M10 - M16:	Aço de moldagem a frio, classe 8.8, galvanizado mín. 5 μm
Parafuso	M20:	Aço, classe do varão 8.8, galvanizado mín. 5 μm
HDA-PR / H	DA-TR (versão aço inox	idável)
Manga:		Aço inoxidável com pontas de carboneto de tungsténio
Parafuso	M10 - M16:	Cone/varão: aço inoxidável
HDA-PF / HI	DA-TF (versão sherardiz	ada)
Manga:		Aço com pontas de carboneto de tungsténio, sherardizado



Parafuso M10 - M16: Aço de moldagem a frio, classe 8.8, sherardizado

Dimensões da ancoragem

HDA-P / HDA-PR / HDA-PF

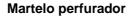
HDA-T / HDA-TR / HDA-TF

Dimensões de HDA

Diâmetro da ancorag	em	_	Н	HDA-P / HDA-PR / HDA-PF / HDA-T / HDA-TR / HDA-TF										
			M10	M	12	M	16	M	20					
			x100/20	x125/30	x125/50	x190/40	x190/60	x250/50	x250/100					
Letra do código de comprimento			Ι	L	N	R	S	V	X					
Comprimento total do parafuso	I_B	[mm]	150	190	210	275	295	360	410					
Diâmetro do parafuso	d_{B}	[mm]	10	1	2	1	6	2	.0					
Comprimento total da														
manga														
HDA-P	Is	[mm]	100	125	125	190	190	250	250					
HDA-T	Is	[mm]	120	155	175	230	250	300	350					
Diâmetro máx. da manga	ds	[mm]	19	21		29		3	5					
Diâmetro da anilha	d _w	[mm]	27,5	33	3,5	45	5,5	5	0					
Número da chave de aperto	S_{w}	[mm]	17	1	9	2	4	3	0					

84 11 / 2010

Instalação


Perfuração

A broca escalonada é necessária para a perfuração a fim de obter a profundidade correcta do furo.

Ancoragem	Broca escalonada com encabadouro TE-C (SDS plus)	Broca escalonada com encabadouro TE-Y (SDS max)
HDA-P/ PF/ PR M10x100/20	TE-C-HDA-B 20*100	TE-Y-HDA-B 20*100
HDA-T/ TF/ TR M10x100/20	TE-C-HDA-B 20*120	TE-Y-HDA-B 20*120
HDA-P/ PF/ PR M12*125/30 HDA-P/ PF/ PR M12*125/50	TE-C HDA-B 22*125	TE-Y HDA-B 22*125
HDA-T/ TF/ TR M12*125/30	TE-C HDA-B 22*155	TE-Y HDA-B 22*155
HDA-T/ TF/ TR M12*125/50	TE-C HDA-B 22*175	TE-Y HDA-B 22*175
HDA-P/ PF/ PR M16 *190/40 HDA-P/ PF/ PR M16 *190/60		TE-Y HDA-B 30*190
HDA-T/ TF/ TR M16*190/40		TE-Y HDA-B 30*230
HDA-T/ TF/ TR M16*190/60		TE-Y HDA-B 30*250
HDA-P M20 *250/50 HDA-P M20 *250/100		TE-Y HDA-B 37*250
HDA-T M20*250/50		TE-Y HDA-B 37*300
HDA-T M20*250/100		TE-Y HDA-B 37*350

Instalação

Ferramenta de instalação

O sistema de instalação (ferramenta e ferramenta de instalação) é necessário para transferir a energia específica para o processo de corte interior.

Instalação de HDA, versão de aço carbono

Ancoragem			IVR		TC b)		TC b)	TC b)	Ferramenta de instalação	o martelo	nicos sobre perfurador ssário
	TE 24 ^{a)} TE 25 ^{a)}	TE 35	TE 40 A	TE 50	TE 56 ^{b)} TE 56-A	TE 75 ^{b)}	TE 76 ^{b)} TE 76-A	TE 70 ^{b)} TE 70-A		Energia de impacto único [J]	Velocidade sob carga [1/min]
HDA-P/T20-M10*100/20									TE-C-HDA-ST 20 M10	3,5 - 4,9	250 - 555
ПDA-P/120-W110 100/20									TE-Y-HDA-ST 20 M10	6,5 - 7,5	480 - 500
HDA-P/T 22-M12*125/30									TE-C-HDA-ST 22 M12	3,5 - 4,9	250 - 555
HDA-P/T 22-M12*125/50									TE-Y-HDA-ST 22 M12	6,5 - 7,5	480 - 500
HDA-P/T 30-M16*190/40 HDA-P/T 30-M16*190/60									TE-Y-HDA-ST 30 M16	8,0 - 11,0	250 - 360
HDA-P/T 37-M20*250/50 HDA-P/T 37-M20*250/100									TE-Y-HDA-ST 37 M20	8,3 - 11,0	280 - 360

a) 1^a velocidade

b) energia de impacto máx.

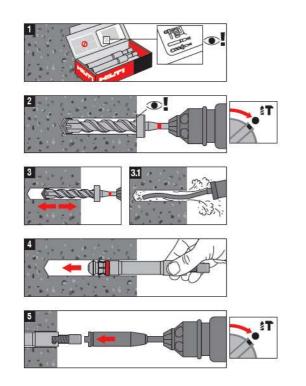
Instalação de HDA- R, aço inoxidável

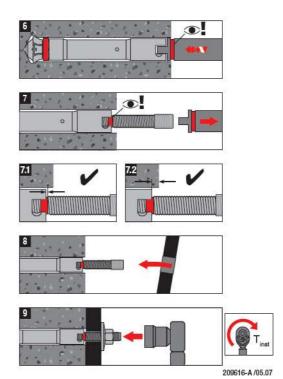
Ancoragem			VR		(q D1		(q D1	(q D1	Ferramenta de instalação	o martelo	nicos sobre perfurador ssário
	TE 24 a) TE 25 a)	TE 35	TE 40 TE 40 A	TE 50	TE 56 b) TE 56-A	(q 5 2 3 1	TE 76 b) TE 76-A	A-07 3T		Energia de impacto único [J]	Velocidade sob carga [1/min]
HDA-PR/TR20-M10*100/20									TE-C-HDA-ST 20 M10	3,5 - 4,9	250 - 620
TIDA-FR/TRZU-WITU TUU/ZU									TE-Y-HDA-ST 20 M10	6,5 - 7,5	480 - 500
HDA-PR/TR 22-M12*125/30									TE-C-HDA-ST 22 M12	3,5 - 4,9	250 - 620
HDA-PR/TR 22-M12*125/50					-				TE-Y-HDA-ST 22 M12	6,5 - 7,5	480 - 500
HDA-PR/TR 30-M16*190/40 HDA-PR/TR 30-M16*190/60									TE-Y-HDA-ST 30 M16	8,0 - 11,0	250 - 360

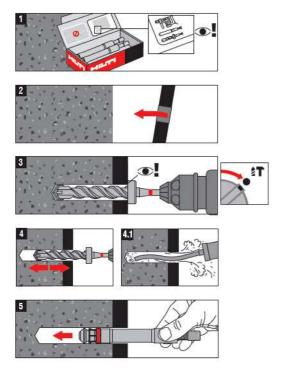
- 1^a velocidade a)
- b) energia de impacto máx.

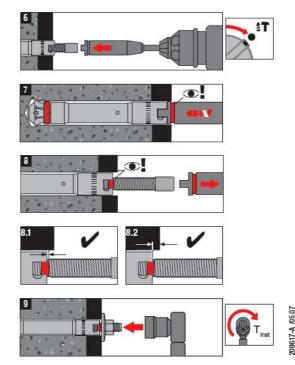
Instalação de HDA- F. versão sherardizada (não abrangida pelas homologações)

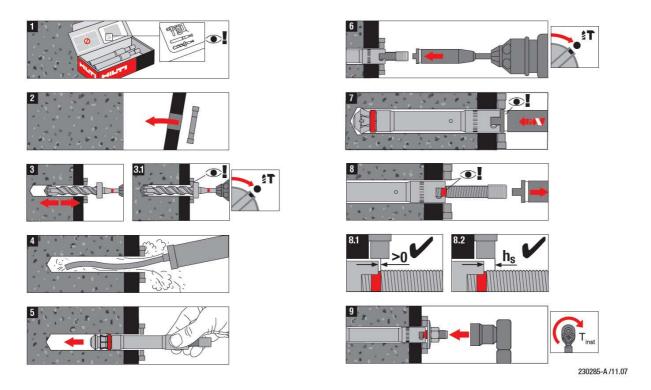
Instalação de FIDA-1, versão siterardizada (não abrangida pelas nomologações)											
Ancoragem			AVR		် ပိ		(q)	(q)	Ferramenta de instalação	o martelo	nicos sobre perfurador ssário
	TE 24 a) TE 25 a)	TE 35	TE 40 TE 40 – /	TE 50	TE 56 b) TE 56-A1	TE 75 b)	TE 76 ^{b)} TE 76-A1	TE 70 ^{b)} TE 70-A1		Energia de impacto único [J]	Velocidade sob carga [1/min]
HDA-PF/TF 20-M10*100/20									TE-C-HDA-ST 20 M10	3,5 – 4,0	610 - 630
HDA-PF/TF 22-M12*125/30 HDA-PF/TF 22-M12*125/50		•							TE-C-HDA-ST 22 M12	3,5 – 4,0	610 - 630
HDA-PF/TF 30-M16*190/40 HDA-PF/TF 30-M16*190/60						•	•	•	TE-Y-HDA-ST 30 M16	8,0 - 11,0	250 - 360

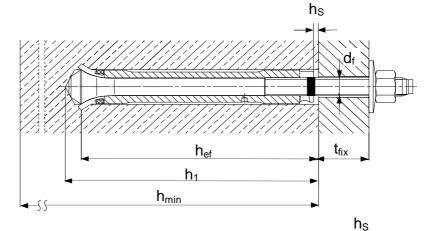

- 1^a velocidade
- a) b) energia de impacto máx.

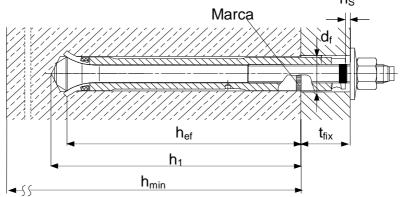

86 11 / 2010


Sequência de instalação


HDA-P, HDA-PR, HDA-PF


HDA-T, HDA-TR, HDA-TF


HDA-F-CW, HDA-R-CW (a instalar com HDA-T, HDA-TF, HDA-TR)

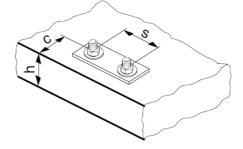

Consultar instruções na caixa do produto para informação detalhada sobre a instalação.

Detalhes de instalação

HDA-T / HDA-TR / HDA-TF

88 11 / 2010

Diâmetro da ancorag	em		HDA-P / HDA-PR / HDA-PF / HDA-T / HDA-TR / HDA-TF M10							
			M10	_		_		_	_	
N.4			x100/20	x125/30	x125/50	x190/40	x190/60	x250/50	x250/100	
Marca na cabeça			ı	L	N	R	S	V	Χ	
Diâmetro nominal da broca	d_0	[mm]	20	2	2	3	0	3	7	
Diâmetro de corte	$d_{\text{cut},\text{min}}$	[mm]	20,10	22	10	30,	10	37,	15	
da broca	$d_{\text{cut},\text{max}}$	[mm]	20,55	22	55	30,	55	37,	70	
Profundidade do furo	h ₁ ≥	[mm]	107	13	33	20)3	26	66	
Profundidade de ancoragem	h _{ef}	[mm]	100	12	25	19	90	25	50	
Reentrância da	h _{s,min}	[mm]	2	2	2	2	2	2	2	
manga	h _{s,max}	[mm]	6		7	8	3	3	3	
Torque de aperto	T _{inst}	[Nm]	50	8	0	12	20	30	00	
·										
Para HDA-P/-PF/-PR										
Furo na chapa	d _f	[mm]	12	14		1	8	2	2	
Espessura mínima do material base	h _{min}	[mm]	180	20	00	270		35	50	
Espessura de	t _{fix,min}	[mm]	0	()	0		()	
fixação	t _{fix,max}	[mm]	20	30	50	40	60	50	100	
Para HDA-T/-TF/-TR										
Furo na chapa	d _f	[mm]	21	2	3	3	2	4	0	
Espessura mínima do material base	h _{min}	[mm]	200-t _{fix}	230-t _{fix}	250-t _{fix}	310-t _{fix}	330-t _{fix}	400-t _{fix}	450-t _{fix}	
Espessura mínima de	e fixação									
-Apenas carga de tracção!	t _{fix,min}	[mm]	10	1	0	1	5	20	50	
-Carga de corte - sem utilização de anilha de centragem	$t_{\text{fix,min}}$	[mm]	15	15		20		25	50	
-Carga de corte - com utilização de anilha de centragem	t _{fix,min} b)	[mm]	10	10		15		20	-	
Espessura máx. de fixação	$t_{\text{fix,max}}$	[mm]	20	30 50		40 60		50	100	


a) utilização de broca escalonada especificada

b) com utilização de anilha de centragem, é possível uma redução de t_{fix,min} para a carga de corte; ver detalhes na ETA-99/0009

Parâmetros de instalação

Diâmetro da ancoraç	gem	,	Н	DA-P / HD	A-PR / HD	A-PF / HDA	-T / HDA- 1	r / HDA-T	F		
			M10		12		16	M : x250/50	20		
_			x100/20	x125/30	x125/50	x190/40	x190/60	X250/50	x250/100		
Espaçamento mínimo	S _{min}	[mm]	100	12	25	19	90	25	50		
Distância mínima ao bordo	C _{min}	[mm]	80	10	00	15	50	20	00		
Espaçamento crítico para ruptura por fendilhação	S _{cr,sp}	[mm]	300	37	75	57	70	75	50		
Distância crítica ao bordo para ruptura por fendilhação	C _{cr,sp}	[mm]	150	19	90	28	35	37	75		
Espaçamento crítico para ruptura por cone de betão	S _{cr,N}	[mm]	300	375		375 570		570		75	50
Distância crítica ao bordo para ruptura por cone de betão	C _{cr,N}	[mm]	150	190		190		285		37	75

As resistências de cálculo devem ser reduzidas para distâncias ao bordo e espaçamentos menores do que os valores críticos.

O espaçamento crítico e a distância crítica ao bordo são relevantes unicamente para ruptura por fendilhação em betão não fendilhado. Em betão fendilhado só o espaçamento crítico e a distância crítica ao bordo são relevantes para ruptura por cone de betão.

Método de dimensionamento simplificado

Versão simplificada do método de dimensionamento de acordo com o ETAG 001, Anexo C. Resistência de cálculo de acordo com os dados apresentados na ETA-99/0009, edição 2008-03-23.

- Influência da classe do betão
- Influência da distância ao bordo
- Influência do espaçamento
- Válido para um grupo de duas ancoragens. (O método também pode ser aplicado para grupos de ancoragens com mais de duas ancoragens ou mais do que um bordo. Os factores de influência devem ser considerados para cada distância ao bordo e espaçamento. Como tal, os valores das resistências de cálculo são conservadores: serão inferiores aos valores exactos apresentados no ETAG 001, Anexo C. Para evitar isto, recomenda-se a utilização do software de dimensionamento PROFIS Anchor.)

Este método de dimensionamento é baseado na seguinte simplificação:

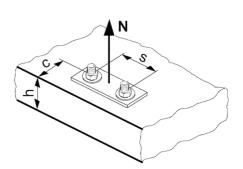
 Não existe actuação de cargas diferentes em diferentes ancoragens individuais (sem excentricidade)

Os valores são válidos para uma ancoragem.

Para aplicações de fixação mais complexas, utilizar o software de dimensionamento PROFIS Anchor.

Tracção

A resistência de cálculo à tracção é a menor de:


- Resistência do aço: N_{Rd,s}

- Resistência do betão ao arranque: $N_{Rd,p} = N_{Rd,p}^0 \cdot f_B$

- Resistência do cone de betão: $\mathbf{N}_{Rd,c} = \mathbf{N}^0_{Rd,c} \cdot \mathbf{f}_B \cdot \mathbf{f}_{1,N} \cdot \mathbf{f}_{2,N} \cdot \mathbf{f}_{3,N} \cdot \mathbf{f}_{re,N}$

. Resistência do betão à fendilhação (apenas betão não fendilhado):

$$N_{Rd,sp} = N_{Rd,c}^0 \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$$

Resistência de cálculo básica à tracção

Resistência de cálculo do aço N_{Rd,s}

Diâm	etro da ancoragem		M10	M12	M16	M20 ^{a)}
NI	HDA-P(F), HDA-T(F)	[kN]	30,7	44,7	84,0	128,0
$N_{Rd,s}$	HDA-PR, HDA-TR	[kN]	28,8	41,9	78,8	-

a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm

Resistência de cálculo ao arranque a $N_{Rd,p} = N_{Rd,p}^0 \cdot f_B$ (apenas em betão fendilhado)

	Bet	ão não	fendilha	ado	В	etão fe	ndilhad	0
Diâmetro da ancoragem	M10	M12	M16	M20 b)	M10	M20 b)		
$N^0_{Rd,p}$ [kN]	-	-	-	-	16,7	23,3	50,0	63,3

- a) A resistência de cálculo ao arranque não é decisiva em betão não fendilhado
- b) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm

Resistência de cálculo do cone de betão $N_{Rd,c} = N^0_{Rd,c} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$ Resistência de cálculo à fendilhação ^{a)} $N_{Rd,sp} = N^0_{Rd,c} \cdot f_B \cdot f_{1,sp} \cdot f_{2,sp} \cdot f_{3,sp} \cdot f_{h,sp} \cdot f_{re,N}$

	Ве	tão não	fendilh	ado	E	Betão fe	ndilhad	0
Diâmetro da ancoragem	M10	M12	M16	M20 b)	M10	M12	M16	M20 b)
$N_{Rd,c}^0$ [kl	l] 38,7	38,7 54,1 101,4 153,1				38,7	72,5	109,3

- a) A resistência à fendilhação apenas deve ser considerada em betão não fendilhado
- b) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm

Factores de influência

Influência da classe do betão

Classe do betão (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$ a)	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = resistência à compressão do betão, medida em cubos com 150 mm de comprimento de aresta

Influência da distância ao bordo a)

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
c/c _{cr,sp}	0,1	0,2	0,3	0,4	0,5	0,0	0,1	0,0	0,3	'
$f_{1,N} = 0.7 + 0.3 \cdot c/c_{cr,N} \le 1$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{1,sp} = 0.7 + 0.3 \cdot c/c_{cr,sp} \le 1$	0,73	0,70	0,79	0,02	0,65	0,00	0,91	0,94	0,97	
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1
$f_{2,sp} = 0.5 \cdot (1 + c/c_{cr,sp}) \le 1$	0,55	0,00	0,03	0,70	0,73	0,00	0,00	0,90	0,33	'

A distância ao bordo não deve ser inferior à distância mínima ao bordo c_{min} apresentada na tabela de detalhes de instalação. Estes factores influentes devem ser considerados para todas as distâncias ao bordo.

Influência do espaçamento entre fixações a)

s/s _{cr,sp} 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{3,N} = 0.5 \cdot (1 + s/s_{cr,N}) \le 1$ $f_{3,sp} = 0.5 \cdot (1 + s/s_{cr,sp}) \le 1$ 0.55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

a) O espaçamento entre fixações não deve ser inferior ao espaçamento mínimo s_{min} apresentado na tabela de detalhes de instalação. Estes factores influentes devem ser considerados para todos os espaçamentos entre fixações.

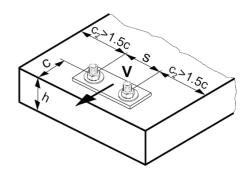
Influência da espessura do material base

h/h _{ef}	2	2,2	2,4	2,6	2,8	3	3,2	3,4	3,6	≥ 3,68
$f_{h,sp} = [h/(2 \cdot h_{ef})]^{2/3}$	1	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,5

Influência da armadura existente

Diâmetro da ancoragem	M8	M10	M12	M16	M20	M24
$f_{re,N} = 0.5 + h_{ef}/200 \text{ mm} \le 1$	0,8 ^{a)}	0,85 ^{a)}	0,9 ^{a)}	1	1	1

a) Este factor aplica-se apenas para elevadas densidades de armadura. Se na área da ancoragem existir armadura com um espaçamento ≥ 150 mm (qualquer diâmetro) ou com um diâmetro ≤ 10 mm e um espaçamento ≥ 100 mm, poderá ser aplicado o factor f_{re.N} = 1.


Corte

A resistência de cálculo de corte é a menor de:

- Resistência do aço:
- $V_{Rd,s}$
- Resistência do betão ao destacamento (pry-out):

$$V_{Rd,cp} = V_{Rd,cp}^0 \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$$

- Resistência do bordo do betão: $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_B \cdot f_h \cdot f_4$

Resistência de cálculo básica ao corte

Resistência de cálculo do aço V_{Rd,s}

Diâm	etro da ancoragem		M10	M12	M16	M20 ^{a)}
	HDA-P, HDA-PF	[kN]	17,6	24,0	49,6	73,6
	HDA-PR	[kN]	17,3	25,6	47,4	-
$V_{Rd,s}$	HDA-T, HDA-TF b)	[kN]	43,3	53,3	93,3	136,7
	HDA-TR b)	[kN]	53,4	65,4	114,3	-

a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 µm

Resistência de cálculo do betão ao destacamento (pry-out) $V_{Rd,cp} = V^0_{Rd,cp} \cdot f_B \cdot f_{1,N} \cdot f_{2,N} \cdot f_{3,N} \cdot f_{re,N}$

		Bet	ão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancorage	M10	M12	M16	M20 a)	M10	M12	M16	M20 ^{a)}		
$V_{Rd,cp}^0$	77,5	108,3	202,9	306,2	55,3	77,3	144,9	218,7		

a) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 μm

Resistência de cálculo do bordo do betão a) $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_b \cdot f_h \cdot f_4$

		Bet	ão não	fendilh	ado	Е	Betão fe	ão fendilhado		
Diâmetro da ancorage	M10	M12	M16	M20 b)	M10	M12	M16	M20 b)		
c _{min} [mm]		80	100	150	200	80	100	150	200	
$V_{Rd,c}^0$ [kN]		8,5	12,8	26,1	45,0	6,1	9,2	18,6	32,1	

a) Para os grupos de ancoragens com mais de duas fixações, apenas devem ser consideradas as fixações próximas do bordo.

Factores de influência

Influência da classe do betão

Classe do betão (ENV 206)	C 20/25	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60
$f_B = (f_{ck,cube}/25N/mm^2)^{1/2}$ a)	1	1,1	1,22	1,34	1,41	1,48	1,55

a) f_{ck,cube} = resistência à compressão do betão, medida em cubos com 150 mm de comprimento de aresta

Influência da distância ao bordo a)

c/c _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{1,N} = 0.7 + 0.3 \cdot c/c_{cr,N} \le 1$	0,73	0,76	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1
$f_{2,N} = 0.5 \cdot (1 + c/c_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

A distância ao bordo não deve ser inferior à distância mínima ao bordo c_{min} apresentada na tabela de detalhes de instalação. Estes factores influentes devem ser considerados para todas as distâncias ao bordo.

b) Valores válidos para espessura mínima da placa base t_{fix,min}. Para a resistência característica a cargas de corte com placas base mais espessas, ver ETA-99/0009 ou utilizar o software PROFIS.

b) HDA M20: apenas se encontra disponível uma versão galvanizada de 5 µm

Influência do espaçamento entre fixações a)

s/s _{cr,N}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$f_{3,N} = 0.5 \cdot (1 + s/s_{cr,N}) \le 1$	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1

a) O espaçamento entre fixações não deve ser inferior ao espaçamento mínimo s_{min} apresentado na tabela de detalhes de instalação. Estes factores influentes devem ser considerados para todos os espaçamentos entre fixações.

Influência de elevadas densidades de armadura

Diâmetro da ancoragem	M8	M10	M12	M16	M20	M24
$f_{re,N} = 0.5 + h_{ef}/200 \text{ mm} \le 1$	0,8 ^{a)}	0,85 ^{a)}	0,9 ^{a)}	1	1	1

a) Este factor aplica-se apenas para elevadas densidades de armadura. Se na área da ancoragem existir armadura com um espaçamento ≥ 150 mm (qualquer diâmetro) ou com um diâmetro ≤ 10 mm e um espaçamento ≥ 100 mm, poderá ser aplicado o factor f_{re,N} = 1.

Influência do ângulo entre a direcção da carga e a direcção perpendicular ao bordo livre

Ângulo ß	0°- 55°	60°	65°	70°	75°	80°	85°	90° - 180°
f _B	1	1,07	1,14	1,23	1,35	1,50	1,71	2

Influência da espessura do material base

h/c	0,15	0,3	0,45	0,6	0,75	0,9	1,05	1,2	1,35	≥ 1,5
$f_h = \{h/(1,5 \cdot c)\}^{2/3} \le 1$	0,22	0,34	0,45	0,54	0,63	0,71	0,79	0,86	0,93	1,00

Influência do espaçamento entre fixações e a distância ^{a)} para a resistência do bordo do betão: f₄

 $f_4 = (c/h_{ef})^{1.5} \cdot (1 + s / [3 \cdot c]) \cdot 0.5$

	Fixa-					G	rupo	de dua	as anc	orage	ns s/h	ef				
c/h _{ef}	ção isolada	0,75	1,50	2,25	3,00	3,75	4,50	5,25	6,00	6,75	7,50	8,25	9,00	9,75	10,50	11,25
0,50	0,35	0,27	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
0,75	0,65	0,43	0,54	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1,00	1,00	0,63	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,25	1,40	0,84	0,98	1,12	1,26	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
1,50	1,84	1,07	1,22	1,38	1,53	1,68	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84	1,84
1,75	2,32	1,32	1,49	1,65	1,82	1,98	2,15	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32	2,32
2,00	2,83	1,59	1,77	1,94	2,12	2,30	2,47	2,65	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
2,25	3,38	1,88	2,06	2,25	2,44	2,63	2,81	3,00	3,19	3,38	3,38	3,38	3,38	3,38	3,38	3,38
2,50	3,95	2,17	2,37	2,57	2,77	2,96	3,16	3,36	3,56	3,76	3,95	3,95	3,95	3,95	3,95	3,95
2,75	4,56	2,49	2,69	2,90	3,11	3,32	3,52	3,73	3,94	4,15	4,35	4,56	4,56	4,56	4,56	4,56
3,00	5,20	2,81	3,03	3,25	3,46	3,68	3,90	4,11	4,33	4,55	4,76	4,98	5,20	5,20	5,20	5,20
3,25	5,86	3,15	3,38	3,61	3,83	4,06	4,28	4,51	4,73	4,96	5,18	5,41	5,63	5,86	5,86	5,86
3,50	6,55	3,51	3,74	3,98	4,21	4,44	4,68	4,91	5,14	5,38	5,61	5,85	6,08	6,31	6,55	6,55
3,75	7,26	3,87	4,12	4,36	4,60	4,84	5,08	5,33	5,57	5,81	6,05	6,29	6,54	6,78	7,02	7,26
4,00	8,00	4,25	4,50	4,75	5,00	5,25	5,50	5,75	6,00	6,25	6,50	6,75	7,00	7,25	7,50	7,75
4,25	8,76	4,64	4,90	5,15	5,41	5,67	5,93	6,18	6,44	6,70	6,96	7,22	7,47	7,73	7,99	8,25
4,50	9,55	5,04	5,30	5,57	5,83	6,10	6,36	6,63	6,89	7,16	7,42	7,69	7,95	8,22	8,49	8,75
4,75	10,35	5,45	5,72	5,99	6,27	6,54	6,81	7,08	7,36	7,63	7,90	8,17	8,45	8,72	8,99	9,26
5,00	11,18	5,87	6,15	6,43	6,71	6,99	7,27	7,55	7,83	8,11	8,39	8,66	8,94	9,22	9,50	9,78
5,25	12,03	6,30	6,59	6,87	7,16	7,45	7,73	8,02	8,31	8,59	8,88	9,17	9,45	9,74	10,02	10,31
5,50	12,90	6,74	7,04	7,33	7,62	7,92	8,21	8,50	8,79	9,09	9,38	9,67	9,97	10,26	10,55	10,85

a) O espaçamento entre fixações e a distância ao bordo não devem ser inferiores ao espaçamento mínimo entre fixações s_{min} e à distância mínima ao bordo c_{min} .

Cargas actuantes simultâneas de tracção e corte

Consultar a secção relativa a "Dimensionamento de Ancoragens" para situações de cargas actuantes simultâneas de tracção e corte.

Valores pré-calculados

Resistência de cálculo de acordo com o ETAG 001, Anexo C e dados indicados na ETA-99/0009, edição 2008-03-25.

Todos os dados se aplicam para betão C 20/25 - f_{ck,cube} = 25 N/mm².

As fixações HDA-PF e HDA-TF não estão abrangidas pela homologação. Para as fixações HDA-T e HDA-TR, a resistência a cargas de corte é calculada para a espessura mínima da placa base apresentada no capítulo sobre detalhes de instalação, na página 88.

Resistência de cálculo

Fixação isolada, sem influência de bordo, corte sem braço de binário

			Bet	tão não	fendilha	ado	Е	Betão fe	ndilhad	0
Diâmetro	da ancoragem		M10	M12	M16	M20	M10	M12	M16	M20
Espessura	ı mínima do material ba	se h _{min} [mm]		200	270	350	180	200	270	350
HDA-T	: Espessura mín. de fixa	ıção t _{fix} [mm]		15	20	25	15	15	20	25
A	Tracção N _{Rd}									
	HDA-P(F), HDA-T(F)	[kN]	30,7	44,7	84,0	128,0	16,7	23,3	50,0	63,3
	HDA-PR, HDA-TR	[kN]	28,8	41,9	78,8	-	16,7	23,3	50,0	-
	Corte V _{Rd}	,		•				•	•	'
72.52	HDA-P, HDA-PF	[kN]	17,6	24,0	49,6	73,6	17,6	24,0	49,6	73,6
	HDA-PR	[kN]	17,3	25,6	47,4	-	17,3	25,6	47,4	-
	HDA-T, HDA-TF	[kN]	43,3	53,3	93,3	136,7	43,3	53,3	93,3	136,7
	HDA-TR [kN]		53,4	65,4	114,3	-	53,4	65,4	114,3	-

Fixação isolada, distância mínima ao bordo ($c = c_{min}$), corte sem braço de binário

			Bet	ão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancoragem			M10	M12	M16	M20	M10	M12	M16	M20	
Espessura mínima do material base h _{min} [mm]			180	200	270	350	180	200	270	350	
HDA-T: Espessura mín. de fixação t _{fix} [mm]			15	15	20	25	15	15	20	25	
Dist. m	ínima ao bordo c _{min}	[mm]	80	100	150	200	80	100	150	200	
A	Tracção N _{Rd}										
Cmin	HDA-P(F), HDA-T(F) HDA-PR, HDA-TR	[kN]	25,5	35,9	66,4	100,9	16,7	23,3	47,4	63,3	
	Corte V _{Rd}			•	•			•	•		
C _{min}	HDA-P, HDA-PF HDA-PR HDA-T, HDA-TF HDA-TR	[kN]	8,5	12,8	26,1	45,0	6,1	9,2	18,6	32,1	

Duas ancoragens, sem influência de bordo, espaçamento mínimo ($s = s_{min}$), corte sem braço de binário (valores de carga válidos para uma ancoragem)

-	· ·										
			Bet	ão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancoragem			M10	M12	M16	M20	M10	M12	M16	M20	
Espessura mínima do material base h _{min} [mm]			180	200	270	350	180	200	270	350	
HDA-T: Espessura mín. de fixação t _{fix} [mm]			15	15	20	25	15	15	20	25	
Espaça	amento mínimo s _{min}	[mm]	100	125	190	250	100	125	190	250	
•	Tracção N _{Rd}										
Smin	HDA-P(F), HDA-T(F) HDA-PR, HDA-TR	[kN]	25,8	36,0	67,6	102,1	16,7	23,3	48,3	63,3	
	Corte V _{Rd}				•			•	•		
	HDA-P, HDA-PF	[kN]	17,6	24,0	49,6	73,6	17,6	24,0	49,6	73,6	
Smin	HDA-PR	[kN]	17,3	25,6	47,4	-	17,3	25,6	47,4	-	
	HDA-T, HDA-TF	[kN]	43,3	53,3	93,3	136,7	36,9	51,4	93,3	136,7	
	HDA-TR	[kN]	51,6	65,4	114,3	-	36,9	51,4	96,6	-	

Cargas recomendadas

Fixação isolada, sem influência de bordo, corte sem braço de binário

			Bet	tão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancoragem			M10	M12	M16	M20	M10	M12	M16	M20	
Espessura mínima do material base h _{min}			180	200	270	350	180	200	270	350	
HDA-T: Espessura mín. de fixação t _{fix} [mm]			15	15	20	25	15	15	20	25	
A	Tracção N _{rec}										
	HDA-P(F), HDA-T(F)	[kN]	21,9	31,9	60	91,4	11,9	16,6	35,7	45,2	
	HDA-PR, HDA-TR	[kN]	20,6	29,9	56,3	-	11,9	16,6	35,7	-	
	Corte V _{rec}			•				•	•		
	HDA-P, HDA-PF	[kN]	12,6	17,1	35,4	52,6	12,6	17,1	35,4	52,6	
	HDA-PR	[kN]	12,4	18,3	33,9	-	12,4	18,3	33,9		
	HDA-T, HDA-TF	[kN]	30,9	38,1	66,6	97,6	30,9	38,1	66,6	97,6	
	HDA-TR	[kN]	38,1	46,7	81,6	-	38,1	46,7	81,6	-	

Fixação isolada, distância mínima ao bordo ($c = c_{min}$), corte sem braço de binário

			Bet	ão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancoragem			M10	M12	M16	M20	M10	M12	M16	M20	
Espessura mínima do material base h _{min} [mm]			180	200	270	350	180	200	270	350	
HDA-T: Espessura mín. de fixação t _{fix} [mm]			15	15	20	25	15	15	20	25	
Dist. m	ínima ao bordo c _{min}	[mm]	80	100	150	200	80	100	150	200	
A	Tracção N _{rec}					_					
Cmin	HDA-P(F), HDA-T(F) HDA-PR, HDA-TR	[kN]	18,2	25,7	47,4	72,1	11,9	16,7	33,9	45,2	
	Corte V _{rec}				•			•			
Cmin	HDA-P, HDA-PF HDA-PR HDA-T, HDA-TF HDA-TR	[kN]	6,1	9,2	18,6	32,1	4,4	6,5	13,3	22,9	

Duas ancoragens, sem influência de bordo, espaçamento mínimo (s = s_{min}), corte sem braço de binário (valores de carga válidos para uma ancoragem)

	•										
			Bet	ão não	fendilh	ado	Betão fendilhado				
Diâmetro da ancoragem			M10	M12	M16	M20	M10	M12	M16	M20	
Espessura mínima do material base h _{min} [mm]			180	200	270	350	180	200	270	350	
HDA-T: Espessura mín. de fixação t _{fix} [mm]			15	15	20	25	15	15	20	25	
Espaça	amento mínimo s _{min}	[mm]	100	125	190	250	100	125	190	250	
•	Tracção N _{rec}										
Smin	HDA-P(F), HDA-T(F) HDA-PR, HDA-TR	[kN]	18,4	25,7	48,3	72,9	11,9	16,6	34,5	45,2	
	Corte V _{rec}				•	•		•	•		
	HDA-P, HDA-PF	[kN]	12,6	17,1	35,4	52,6	12,6	17,1	35,4	52,6	
Smin	HDA-PR	[kN]	12,4	18,3	33,9	-	12,4	18,3	33,9	-	
		[kN]	30,9	38,1	66,6	97,6	26,4	36,7	66,6	97,6	
	HDA-TR	[kN]	36,9	46,7	81,6	-	26,4	36,7	69,0	-	

HDA | Fixação de corte interior

Para as cargas recomendadas, é tido em conta um coeficiente de segurança parcial para acções de γ = 1,4. O coeficiente de segurança parcial para acções depende do tipo de carga e deve ser retirado dos regulamentos nacionais.

98 11 / 2010